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Abstract

A numerical method for simulations of flow over variable geometries including deformable domains or moving

boundaries is presented in the context of high-order discontinuous Galerkin (DG) methods in the framework of an

arbitrary Lagrangian Eulerian (ALE) description to take into account the deformable domains where boundaries are

moving with prescribed motions or deformed under external forces. The ALE DG approach is shown to satisfy the

geometric conservation law while preserving high-order accuracy. For variable geometries, we develop a simple and

effective mesh smoothing technique based on element size functions to handle deformable grids due to moving

boundaries. The current approach is applied to simulations of moving domain problems including laminar flows over

oscillating cylinders and a flapping foil to show the ability of handling variable geometries with large deformation and

high accuracy. The simulation results are compared with earlier experimental and numerical studies.

& 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Flows over variable-geometry domains are largely involved in many engineering applications, including

aeroelasticity, fluid–structure interactions, flapping and insect flight. Together with experimental studies, numerical

simulations have played an important role in investigating and understanding these complex and multi-disciplinary

phenomena. Numerically, one requires the simulation methods to be able to handle moving domains while maintaining

accuracy and conservation. Moreover, the interactions of flows with moving boundaries resulting in unsteady

phenomena, such as wakes and vortices, necessitate high-order accurate approximations to resolve and capture the

unsteadiness of flows. These requirements become one of the main challenges in developing a robust and efficient

numerical method for this class of problems.

The arbitrary Lagrangian–Eulerian (ALE) description is most commonly used in flow problems involving large

deformation due to moving boundaries. It was primarily developed for finite difference methods for fluid flows (Hirt

et al., 1997) and later extended in the context of finite element and finite volume methods for both fluid and structure

dynamics [see Donea and Huerta (2003) for an extensive review]. Combining the best features from the traditional
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uidstructs.2009.11.002

19 1591; fax: þ65 6467 4350.

ess: nguyenvt@ihpc.a-star.edu.sg

www.elsevier.com/locate/jfs
dx.doi.org/10.1016/j.jfluidstructs.2009.11.002
mailto:nguyenvt@ihpc.a-star.edu.sg


ARTICLE IN PRESS
V.-T. Nguyen / Journal of Fluids and Structures 26 (2010) 312–329 313
Lagrangian and Eulerian descriptions, the ALE method uses a computational mesh which can move with arbitrary

velocity independent of the material velocity. It thus gives flexibility in handling moving domain problems, especially

for fluid–structure interactions. On one hand, it allows flexible grids with material flowing through. On the other hand,

it avoids problems of tracking interfaces in the Eulerian framework as well as large distortion encountered in the

Lagrangian approach.

Although the grid is allowed to move arbitrarily, the velocity at domain boundaries is usually known in practice, e.g.

moving boundary problems and fluid–structure interactions. The computational grid thus may be distorted with just

the movement of grid points on the boundaries. One of the main issues in the ALE description is to decide when to

regenerate the mesh in order to preserve its quality. However, regeneration of the grids usually requires more

computational resources and thus should be avoided if possible. Alternatively, a grid velocity smoothing scheme is

employed to update the grid and minimize the distortion. In principle, the grid velocity is constructed for the whole

domain such that the grid quality is assured and the velocity at the boundaries matches the given boundary velocity.

One may refer to Lohner and Yang (1996) for a brief description on various techniques used in literature.

Apart from handling moving grids in those deformable domain applications, accuracy is also another concern in

designing a numerical scheme for this class of problems. Moreover, with the advent of increasing computational power,

the requirement of high-order accuracy in numerical simulations has become more critical in obtaining solutions for

large-scale complex problems such as aeroacoustics, turbulence flows, etc. Development of high-order methods and

their application for solving real-world problems have emerged as one of the most challenging research topics in

computational mechanics over the last decade. In recent years, discontinuous Galerkin (DG) methods have made

considerable progress in computational mechanics. The concept of combining finite element and finite volume

discretization makes DG methods suitable for a wide range of applications in many areas including fluid dynamics,

aeroacoustics and electromagnetics (Cockburn and Shu, 2001), mainly due to its advantages of high-order

approximation on arbitrary unstructured grids as well as compactness and conservation. In this article, high-order

DG discretizations are combined with the ALE approach to provide a new way of simulating compressible Navier–

Stokes flows over deformable domains and moving boundaries.

For variable geometry problems, a number of DG methods in the ALE framework have been developed for many

applications of moving boundaries, free surface flows, fluid–structure interactions; see, for instance, Lomtev et al.

(1999) and van de Vegt and Xu (2007). An ALE matrix-free discontinuous Galerkin method was first introduced in

Lomtev et al. (1999) for compressible Navier–Stokes flows in moving domains. There, the DG discretization is applied

for the conservation laws written for arbitrarily moving domains in the ALE framework as described in Ventakasubban

(1995) with an additional source term involving the grid moving velocity. It uses a force-directed algorithm from graph

theory to update the grid moving velocity. An alternative approach is presented in Persson et al. (2009) for high-order

DG methods on deformable domains. In that work, a continuous mapping between a fixed reference configuration and

a time-varying domain is constructed with explicit mapping using blending functions. The equations of conservation

laws are then cast in the reference domain with the introduction of variable geometries. An additional equation related

to the Jacobian of transformations is introduced to ensure the preservation of constant solutions. The method has been

shown to obtain high-order accurate solutions for many applications with variable geometries. However, the

construction of explicit mapping is not always trivial for some complex applications.

In this work, we introduce a DG approach for compressible Navier–Stokes flows in variable-geometry domains. The

governing equation is discretized in the moving frame using high-order discontinuous Galerkin spatial discretization. In

our presented discretization, the divergence of grid velocity is eliminated and the geometric conservation law is always

satisfied without introducing a grid velocity source term, as suggested in Lomtev et al. (1999). This implies the

preservation of constant solutions as well as the accuracy and stability in solving the moving domain problems. The

explicit TVD Runge–Kutta time stepping (Gottlieb and Shu, 1998) is applied for time integration. As for the mesh

movement, the grid velocity is updated in such a way that the nodes very close to the moving boundaries have a velocity

almost equivalent to that of the boundaries, as suggested in Lohner and Yang (1996). However, instead of solving for

the Laplacian equation with variable diffusion, the node moving velocity is constructed locally from its neighbouring

vertices as a modification of the force-directed algorithm presented in Lomtev et al. (1999) with the weights evaluated

from element size functions. A combination of variable diffusivity approach and spring analogy results in a simple and

effective algorithm in handling deformable meshes with minimum overhead. Although the proposed approach is

developed for general three-dimensional applications, for the sake of simplicity in presentation, it is applied here to

problems in two-dimensional space.

For numerical simulations, we first present some of the results on accuracy as well as the preservation of constant

solutions to assure the high-order accuracy and conservation of the approach. As an application of the proposed

approach for moving domain problems, we consider some unsteady flow problems including flows over moving

boundaries with prescribed motions. The most common example is that of a circular cylinder oscillating in direction
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transverse to the free stream. The structure of the flow, as well as forces acting on the cylinder, depends on Reynolds

number and frequency ratio. When the oscillating frequency of the cylinder matches the natural Karman frequency of

the stationary cylinder wake, a lock-on phenomena is occurred. This problem has been extensively investigated in the

literature experimentally (Tanida et al., 1973; Gu et al., 1994) and numerically (Lu and Dalton, 1996; Patnaik et al.,

1999). The results from our simulations for the problems of an oscillating cylinder and a pitching airfoil are presented

and are found to compare well with the earlier published results. Examples of a pitching and hovering airfoil, similar

to an insect flight mechanism (Wang, 2005), are also presented in this work. The results compare well with earlier

experiments and numerical studies.
2. ALE discontinuous Galerkin for variable geometries

2.1. Governing equations

Consider the system of conservation laws

ut þ r � FðuÞ ¼ 0; ð1Þ

over the domain O with the appropriate boundary conditions applied on the domain boundary G � @O¼GD [ GN . In

general, the boundaries are allowed to move with velocity mG. Here, uðx; tÞ is the conserved variable and x¼ ðx1; . . . ; xd Þ

is the position vector in d-dimensional space. In the present work, we consider a compressible Navier–Stokes flow,

where the conserved variables are given by

u¼ ðr ru1 ru2 ru3 reÞT: ð2Þ

The flux function F ¼ Fe�Fv includes the Euler flux FeðuÞ and the viscous flux FvðuÞ described in three-dimensional

space as

F i
eðuÞ ¼

rui

ruiu1 þ pdi1

ruiu2 þ pdi2

ruiu3 þ pdi3

rhui

0
BBBBBB@

1
CCCCCCA

for i¼ 1; 2; 3; ð3Þ

F i
vðu;ruÞ ¼

0

t1i

t2i

t3i

uktki�Qi

0
BBBBBB@

1
CCCCCCA

for i¼ 1; 2; 3; ð4Þ

where r is the density, ui is the velocity component, p is the pressure, e is the internal energy, h is the enthalpy and di;j is

the Kronecker function. The stresses are given by

tij ¼ m
@ui

@xj

þ
@uj

@xi

þ ldij
@uk

@xk

� �
for i; j ¼ 1; 2; 3 ð5Þ

and the heat flux is

Qi ¼�k
@T

@xi

for i¼ 1; 2; 3: ð6Þ

Here, m is the dynamic viscosity coefficient, l¼� 2
3
, k is the coefficient of thermal conductivity and T is the temperature.

The Prandtl number is computed as

Pr¼
cpm
k
: ð7Þ
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2.2. ALE formulation

Let Vp
hðOÞ be the space of polynomials of degree p on the subdivision T h of the domain O into elements O¼

S
k2T h

k.
Movement of the domain boundaries requires the change of grid in order to maintain the conforming, connectivity and

quality of the elements. Denote jiðx; tÞ 2 Pp to be the basis of Vp
h, and write the approximate solution uh in terms of the

discrete solution vector uh as

uhðx; tÞ ¼
XNðpÞ
j ¼ 0

uh;jðtÞjjðx; tÞ; ð8Þ

where NðpÞ is the number of degrees of freedom and jiðx; tÞ is taken as nodal basis functions (Koornwinder, 1992)

dependent on both space and time to take into account mesh motions. For the sake of simplicity, we will drop the

arguments ðx; tÞ in the presentation of the basis function j for the rest of the paper. For a cell with volume k bounded

by the surface @k, which may be moving in time with velocity m¼ mðx; tÞ, where x 2 @k, the DG discretization is written

in the form: find uh 2 Vp
hðOÞ such that

Z
k
ji

@uh

@t
dxþ

Z
k
jir � FðuhÞdx¼ 0; 8k 2 T h; 8ji 2 V

p
h; 8i¼ 1; . . . ;NðpÞ: ð9Þ

It is noted that the state values uhðx; tÞ and the basis jiðx; tÞ are changing with time; thus, the Reynolds transport

theorem can be written as

d

dt

Z
kðtÞ

jiuh dx¼

Z
kðtÞ

ji

@uh

@t
dxþ

Z
kðtÞ

@ji

@t
uh dxþ

I
@kðtÞ

jiuhnn ds; 8jj 2 V
p
h; 8k 2 T hðtÞ; 8i¼ 1; . . . ;NðpÞ; ð10Þ

where nn ¼ m � n is the moving velocity of the cell interface in normal direction. Substitute (10) into the Eq. (9) and, via

integration by parts, we have

d

dt

Z
kðtÞ

jiuh dx¼

Z
kðtÞ

@ji

@t
uh dxþ

Z
kðtÞ
rji � FðuhÞdx�

I
@kðtÞ

jiðF nðuhÞ�uhnnÞds; 8ji 2 V
p
h; 8k 2 T hðtÞ; 8i¼ 1; . . . ;NðpÞ:

ð11Þ

The discontinuous Galerkin formulation for a moving grid can now be expressed as follows: find uh 2 Vp
h such that

8ji 2 V
p
h

d

dt

Z
k
jiuh dx�

Z
k

@ji

@t
uh dx�

Z
k
rji � FðuhÞdxþ

I
@k
jiF ðuþh ; u�h ; n; nnÞds¼ 0; 8k 2 T h; 8i¼ 1; . . . ;NðpÞ; ð12Þ

where F ðuþh ; u�h ; n; nnÞ approximating FnðuÞ�unn is the numerical flux at an interior element boundary or a domain

boundary which is moving with velocity nn in the normal direction. The ðÞþ and ðÞ� notation indicates the trace of the

solution taken from the interior and exterior of the element, respectively, and n is the outward normal vector to the

boundary of the element. Along the domain boundaries, the exterior state of the solution is constructed by weakly

imposing the boundary conditions. In the computation of the flux across element boundaries, various numerical flux

functions including Godunov’s, Lax-Friedrichs’, Roe’s can be used for evaluating of inviscid flux; for example, we use

Lax-Friedrichs flux in this work. As for the viscous flux requiring the approximation of solution derivatives, we use a

local discontinuous Galerkin procedure (Cockburn and Shu, 2001). At the domain boundaries, boundary conditions

are weakly imposed by evaluating the interior and exterior solution states. Details of how to implement the boundary

conditions are presented in the Appendix A.

The fundamental ALE relation between material time derivatives, referential time derivatives and spatial derivatives

of basis functions is written as

dji

dt
¼
@ji

@t
þ m � rji; 8i¼ 1; . . . ;NðpÞ: ð13Þ

As the basis functions move with the grid velocity, it is then observed that the substantial derivative of the basis

functions vanishes with the grid motion, i.e. dj=dt¼ 0. Therefore, we have

@ji

@t
¼�m � rji; 8i¼ 1; . . . ;NðpÞ; ð14Þ
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where m¼ ðn1; . . . ; nd Þ is the moving velocity of the given region in d-dimensional space. Eq. (12) can then be rewritten as

d

dt

Z
kðtÞ

jiuh dx¼

Z
kðtÞ
rji � ðFðuhÞ�muhÞdx�

I
@kðtÞ

jiF ðuþh ; u�h ; n; nnÞds; 8k 2 T hðtÞ 8i¼ 1; . . . ;NðpÞ: ð15Þ

In the above expression, the original flux function is modified to reflect the movement of the grid. Substituting the

discrete approximation of the solution (8) into the above expression, one can obtain a semi-discrete system of ODEs as

ðMUh Þt ¼RðU hÞ; ð16Þ

where U h is the global discrete solution vector, and M is the block diagonal mass matrix for which each block is an

element mass matrix computed as

M ijjk ¼

Z
k
jijj dx; 8i¼ 1; . . . ;N; 8k 2 T h: ð17Þ

Here, RðU hÞ is the residual vector given as

RðU hÞijk ¼

Z
k
rji � ðFðuhÞ�muhÞdx�

I
@k
jiF ðuþh ; u�h ; n; nnÞds; 8k; 8i¼ 1; . . . ;N: ð18Þ

The system of ordinary differential equations (16) can be integrated in time using either explicit or implicit time-

stepping algorithms. In this work, an explicit fourth order TVD Runge–Kutta method (Gottlieb and Shu, 1998) is

employed to advance solutions in time. The integrals in (17) and (18) are evaluated using Gaussian quadrature rules

(Solin et al., 2004). A quadrature rule for the integral over a domain of line segment, triangle or tetrahedral used in our

computation is generally described as

Z
O

f ðxÞdO �
X

g

wgf ðxgÞ; ð19Þ

where wg denotes the weight and xg is the coordinate of the quadrature point. The number of quadrature points

depends on the order of the approximation and the quadrature rule used. It is known that in order to obtain ðpþ 1Þ

order of accuracy for p th order DG methods (DGPp), the quadrature rules over each of the faces of the elements must

be exact for polynomial of order ð2pþ 1Þ and the quadrature approximation for the integral over the interior of the

elements (element boundaries) must be exact for polynomial of order 2p (Cockburn and Shu, 2001).
2.3. Geometric conservation law

In simulations of flow problems involving moving boundaries, it is important to ensure that a numerical scheme

reproduces exactly a constant solution. This preservation of constant solution is referred to as the geometric

conservation law (GCL), which simply states that a solution of a uniform flow under any numerical discretization

scheme should be preserved exactly with an arbitrary mesh motion. The concept of GCL was first introduced in

Thomas and Lombard (1979) and later applied to the design of numerical methods for simulations of flows over moving

domains in the context of the finite difference as well as the volume method (Guillard and Farhat, 2000). The necessity

of the GCL condition was also studied in Lomtev et al. (1999) and Persson et al. (2009) for DG discretization with

moving boundaries. Compliance to the GCL condition in the framework of ALE is believed to ensure at least first-order

accuracy in time (Guillard and Farhat, 2000) and possibly time stability of numerical schemes.

Mathematically, it must be shown that the ALE formulation (15) satisfies the uniform flow exactly. Inserting a

constant solution, uðx; tÞ ¼ u0, into (15) and using the consistency property of numerical fluxes,

F ðu0; u0; n; nnÞ ¼ Fðu0Þ�m � nu0; ð20Þ

we obtain the following expression after rearrangement:

u0

d

dt

Z
kðtÞ

ji dx¼ Fðu0Þ

Z
kðtÞ
rji dx�

I
@kðtÞ

jim � nds

� �
þ u0

I
@kðtÞ

jim � nds�

Z
kðtÞ
rji � m dx

� �
; 8k 2 T hðtÞ; 8i¼ 1; . . . ;NðpÞ:

ð21Þ
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Applying the divergence theorem, the integrals associated with the flux function vanish and the above equation is

rewritten as

d

dt

Z
kðtÞ

ji dx¼

I
@kðtÞ

jim � nds�

Z
kðtÞ
rji � m dx; 8k 2 T hðtÞ; 8i: ð22Þ

The time derivative of the integral on the left can be further expanded as

d

dt

Z
kðtÞ

ji dx¼

Z
kðtÞ

@ji

@t
dxþ

I
@kðtÞ

jim � nds; 8i: ð23Þ

Substituting (23) into (22), we haveZ
kðtÞ

@ji

@t
þ rji � m

� �
dx¼ 0; 8i: ð24Þ

It is observed that expression (24) is always satisfied due to the fact that the basis functions move with the grid velocity

as stated in (14). In other words, the ALE DG discretization (15) preserves the constant solution exactly and thus

implies the GCL condition.
2.4. Moving mesh velocity

In the ALE formulation, the moving mesh velocity m can be arbitrarily found such that the moving velocity at the

interface must be equal to the boundary velocity mG, either prescribed for fixed boundaries or obtained from

the structure response in applications of fluid–structure interaction. Due to the movement of the boundaries, the

computational mesh is deformed and possibly fails to preserve its quality. In the context of the ALE framework, one

has to either regularize the grid moving velocity or decide to do the remeshing after certain steps, which often leads to

increased computational cost, loss of accuracy and conservation. Deriving a robust and efficient scheme of constructing

mesh velocity could help in reducing the effort of remeshing and thus the overhead. This has motivated many different

approaches for computing the grid velocity, including the velocity smoothing technique.

Generally, the mesh velocity is directly computed from the velocity of the moving boundaries in order to minimize the

grid distortion. The mesh velocity can be obtained from solving the equation

r � ðkðxÞrmðxÞÞ ¼ 0; ð25Þ

with diffusivity of kðxÞ and Dirichlet boundary condition

m¼ mG; x 2 G: ð26Þ

One can discretize Eq. (25) using the finite element method to obtain the grid velocity. A simple uniform Laplacian

smoothing is recovered if one sets kðxÞ ¼ 1; however, it does not avoid edge crossing and element collapsing, especially

for the nonuniform grid under motion. Alternatively, variable diffusivity approaches (Lohner and Yang, 1996) can be

used to alleviate the edge crossing by setting the diffusive coefficient to be a function of the mesh characteristics, for

example mesh sizes and node coordinates. In the current work, the grid velocity is updated using a simple approach

similar to the one presented in Lomtev et al. (1999). Velocity at a node is obtained from the weighted average of velocity

of neighbouring nodes shown in Fig. 1,

m0 ¼
XNe

i ¼ 1

wimi; ð27Þ

where Ne is the number of edges meeting at the current node and wi is the associate weighted coefficient of

corresponding the neighbouring node i. The coefficients wi associated with a node are computed from the prescribed

mesh size function hðxÞ, giving the desired element size. The mesh size function, usually specified by users, is not an

actual size but a relative distribution of nodes over the domain. It could also be created from the distance function dðxÞ
to the boundaries or expressed in terms of curvatures computed from the distance function. The weight coefficient at a

node is simply computed as

wðxiÞ ¼
hðxiÞPNe

j ¼ 1 hðxjÞ
: ð28Þ
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Fig. 1. Connectivity and velocity update at a nodes from its neighbours.
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Fig. 2. Grids for pitching airfoil using moving mesh velocity technique for updating the grid nodes: (a) grid at low angle of attack;

(b) grid at higher angle of attack. The grid quality is well maintained as well as the local features, adaptivity.
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For a given interface velocity, the mesh velocity is iteratively computed, as in (27), until convergence, which often

requires only a few iterations. The velocity of nodes on the boundary is directly obtained from the boundary conditions.

This approach for mesh smoothing performs fairly well for problems with simple boundary movement, for example the

pitching airfoil as shown in Fig. 2. It can maintain the mesh quality as well as the gird features. For a more complicated

boundary deformation, this technique may not prevent elements from collapsing as well as badly shaped elements.

However, it works well for most of our current simulations of moving domain problems with reasonably large

deformations.
3. Numerical examples

3.1. Validation

The presented approach is validated first for a moving domain problem where the motion is prescribed. We consider

a deformable domain with the grid motion defined as

xðtÞ ¼ x0 þ X0sinðnt2pt=t0Þsinðnx2px=LxÞsinðny2py=LyÞ; ð29Þ

yðtÞ ¼ y0 þ Y0sinðnt2pt=t0Þsinðnx2px=LxÞsinðny2py=LyÞ; ð30Þ

where ðx; yÞ are the grid coordinates in two-dimensional space, Lx;y are the domain sizes in the x and y direction,

respectively, and t0 denotes the reference time. Here, nx;y and nt are the number of periods in space and time,
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respectively. Fig. 3 shows the motion of the grid in the space domain of Lx ¼ Ly ¼ 20 and time domain of t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52 þ 52

p
during space and time period of nx ¼ ny ¼ nt ¼ 1 with amplitude of X0 ¼Y0 ¼ 0:5.
3.1.1. Free stream preservation

In order to check the geometric conservation law for the proposed approach, we consider a uniform inviscid

compressible flow in the square domain of ðx; yÞ 2 ½10� 10�. The mesh motion is set as in above with t0 ¼ 10,

nx ¼ ny ¼ nt ¼ 1 and amplitudes X0 ¼Y0 ¼ 0:5. It was found that the error of the solution at t¼ 0:5t0 with the initial

condition u0 is very small and in the order of 10�8 for different approximation polynomials as shown in Table 1. This

error, moreover, remains of the same order for various grid refinements in both L2 and L1 norms. As the solution is

constant, refinement of the polynomial interpolation order does not provide more accuracy but rather incurs more error

in the approximation of integrations, as shown in Table 1 for L2 norm of polynomial approximation order p¼ 2.

However, the errors are found to be relatively small for various interpolation orders. It is again verified that the

geometric conservation law is satisfied in the framework of the proposed ALE approach.
3.1.2. Propagation of isentropic vortex

Next, we consider the propagation of the isentropic vortex in Erlebacher et al. (1997), described as a perturbation to a

mean flow of density r1, pressure p1, velocity ðu1; v1Þ and temperature T ¼ p=r. The perturbation in ðũ; ṽ;T
˜
Þ centred

at ðx0; y0Þ has the form of

ðũ; ṽÞ ¼ eteað1�t
2Þð�ðy�y0Þ; ðx�x0ÞÞ;

T
˜
¼�
ðg�1Þe2e2að1�t

2Þ

4ag
; ð31Þ
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Fig. 3. Motion of the mesh with time period nx ¼ 1:0 and space period nx ¼ ny ¼ 1:0: (a) t¼0; (b) t¼5.0.

Table 1

Freestream flow preservation: error of computed solution versus free flow condition.

h Elements DGP1 DGP2 DGP3

jejL2
jejL1 jejL2

jejL1 jejL2
jejL1

4.0 50 5:36� 10-7 7:33� 10-8 1:19� 10-6 1:33� 10-7 7:22� 10-7 9:80� 10-8

2.0 200 3:48� 10-7 2:67� 10-8 9:41� 10-7 5:25� 10-8 4:75� 10-7 3:50� 10-8

1.0 800 2:51� 10-7 1:12� 10-8 8:52� 10-7 2:69� 10-8 3:47� 10-7 1:90� 10-8

0.5 3200 1:93� 10-7 4:89� 10-9 7:93� 10-7 1:26� 10-8 2:45� 10-7 7:72� 10-9
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where t¼ r=rc and r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ

2
þ ðy�y0Þ

2
q

. Here, e denotes the strength of the vortex, a and rc are the decaying rate

and the strength radius of the vortex, respectively.

It is known that the analytic solution at ðx; y; tÞ is given as (Erlebacher et al., 1997)

u¼ u1 1�
eðy�y0�v1tÞ

2prc

eaf ðx;y;tÞ

� �
; v¼ v1 1þ

eðx�x0�u1tÞ

2prc

eaf ðx;y;tÞ

� �
;

r¼ r1 1�
e2ðg�1ÞM2

1

16ap2
e2af ðx;y;tÞ

� �1=ðg�1Þ

; p¼ p1 1�
e2ðg�1ÞM2

1

16ap2
e2af ðx;y;tÞ

� �g=ðg�1Þ

; ð32Þ

where f ðx; y; tÞ ¼ ð1�ðx�x0�u1tÞ2�ðy�y0�v1tÞ2Þ=r2c . In this work, the vortex is initially located at ðx0; y0Þ ¼ ð2:5; 2:5Þ
in the domain of 10� 10. The free stream flow condition is M1 ¼ 1=

ffiffiffi
g
p

in the diagonal direction of y¼ p=4, with the

pressure and density of being p1 ¼ 1 and r1 ¼ 1, respectively. The vortex has the strength of e¼ 5:0, a¼ 0:5 and

rc ¼ 1:0.
The solution is integrated in time using the explicit fourth-order Runge–Kutta method. Fig. 4 shows errors between

computed solutions and exact solution in L2 norm for different orders of approximation p¼ 1; 2; 3. As the mesh is

refined, it is observed that the solution converges at the expected rate.

3.2. Forced oscillation cylinder

We now consider a viscous flow over an oscillating cylinder. Motion of the cylinder is prescribed via position of the

centre ycðtÞ ¼ asinð2pftÞ, where f and a are the frequency and amplitude of the oscillation, respectively. The forced

frequency of the oscillation is chosen to be in the range of the vortex-shedding frequency fs of the wake expressed as

non-dimensional Strouhal number, Sts ¼ fsD=U0, where U0 is the free stream velocity and D is the diameter of the

cylinder.

First, the cylinder is held fixed in space until the flow is fully developed. As shown in Braza et al. (1986), for a range of

Reynolds numbers ðRe¼U0D=nÞ, a well-known Karman vortex pattern is formed in the wake of the cylinder due to the

breaking of flow symmetry. In this study, simulations were performed for different Reynolds numbers ranging from

Re¼ 80 to 1000. Table 2 shows the results of the average drag coefficient and Strouhal number at Re¼ 500 on different

grids, as depicted in Fig. 5. The refinement of the grid is done by doubling the number of points along the circular

surface, from a coarse grid with 32 points to a medium grid consisting 64 points and a fine grid with 128 points. The

average drag coefficient and Strouhal number obtained from the medium grid is closer to the results obtained on the

fine grid, which converges to the experimental data from Roshko (1954). The drag coefficient and Strouhal number

obtained using the proposed approach are compared with the experimental data and other numerical calculations. In

Fig. 6, the present results are plotted against the experimental data and numerical computation reported in Braza et al.

(1986). As reported in Roshko (1954), the Strouhal number is in the range of 0.2–0.22 for the same Reynolds number
100
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(1954); 	, Braza et al. (1986); ’, present.

Table 2

Drag coefficient and Strouhal number at Re¼ 500.

Mesh size (hmin) Cd St

Coarse mesh 0.1 1.4704 0.241

Medium mesh 0.05 1.4502 0.223

Fine mesh 0.025 1.4413 0.218

Experiment (Roshko, 1954) – – 0.20–0.22

Comparison of computational results on refined grids with experimental data extracted from Braza et al. (1986).
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ReZ200. A good comparison of the vortex shedding frequency obtained from the current computation with the

experimental results can be seen in Fig. 6(a). The average drag coefficient agrees well with the experimental data for

lower Reynolds numbers, Reo500. It is also observed that there is a discrepancy between the present result with the

experimental data for Re¼ 500 and 1000. This could be due to the three-dimensional flow nature at higher Reynolds

numbers and the fact that the present simulation is two-dimensional.
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The cylinder is now forced to oscillate in the transverse direction with frequency f and amplitude a. This problem has

been studied extensively over the past decades with a lot of both experimental and numerical results, including the

experimental work in Tanida et al. (1973) as well as numerical study in Patnaik et al. (1999) and Lu and Dalton (1996)

for two-dimensional flows over an oscillating cylinder. In this work, simulations are carried out for various

combinations of frequencies and amplitude ratio in a range of Reynolds number Re¼ 8021000. For the sake of brevity

and comparison, only the results of variation in frequency ratio f =fs at Re¼ 80 and amplitude ratio of a=D¼ 0:14 are

discussed in detail. Some comparison can be made with the available experimental and numerical data.

Fig. 7 shows the temporal history of lift and drag coefficients. It is well-known that, in a certain range of frequency

ratio f =fs, the vortex shedding is entrained by the cylinder motion. Thus, the excitation frequency is able to drive the

vortex shedding frequency to match the cylinder oscillation frequency. This phenomenon is called lock-in. In the lock-in

regime, the variation of the force coefficients, drag and lift, is in phase with the movement of the cylinder, as shown in

Fig. 7 for frequency 0:8 
 f =fs 
 1:2. The stable periodic history of force coefficients implies a synchronization flow

regime. The spectral plot of lift coefficient in Fig. 8 presents a single peak as a unique dominant frequency, indicating a

lock-in regime. For f =fs ¼ 1:3, it can be seen that there are two dominant frequencies driving the response of the system,

as depicted in the spectral plot. The combination of these two dominant frequencies causes a ‘‘non-lock-in’’ response

shown in a ‘‘beat’’ pattern of the force history. The range of the lock-in frequency ratio varies with Reynolds number

and the amplitude of the oscillation of the cylinder. At Re¼ 80 and amplitude ratio of a=D¼ 0:14, the present result of
lock-in frequency range ð0:8 
 f =fs 
 1:2Þ compares well with the results reported in Patnaik et al. (1999). It is also

noticed that the force coefficients are increased in the lock-in regime. Fig. 9 shows the mean drag coefficient versus

excitation frequency. The present result is compared with the experimental data of Tanida et al. (1973) and the
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Note that there are two dominant frequencies in the non lock-in case ðf =fs ¼ 1:3Þ including the natural shedding frequency and forcing

frequency while there is only one dominant frequency in the lock-in case: (a) f =fs ¼ 0:8; (b) f =fs ¼ 1:0; (c) f =fs ¼ 1:2; (d) f =fs ¼ 1:3.
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numerical result reported in Patnaik et al. (1999) for Re¼ 80 and a=D¼ 0:14. The drag coefficient is sharply increased

in the vicinity of f =fs ¼ 1. Compared to the experimental data, the peak is overestimated and shifted to the right by the

present approach; this is probably due to the difference in the natural vortex shedding frequency between the present

result ðfs ¼ 1:60Þ with the earlier experiment ðfs ¼ 1:54Þ and simulation ðfs ¼ 1:43Þ. However, the current computation

matches fairly well with the experiment and the current result is able to predict the sharp increase in the drag coefficients

more favourably than the earlier numerical result.

Interaction between the oscillation of the cylinder and vortex shedding also results in a change of flow structure in the

wake. Williamson and Govardhan (2004) classified different shedding modes according to the number of vortex pairs

(P) or single vortices (S). As described in Williamson and Govardhan (2004), there are different vortex wake patterns

for a cylinder translating in a sinusoidal fashion. The wake vortex patterns may be formed by a combination of single

vortices (S) and vortex pairs (P). It is also found that the vortex street in the downstream of the cylinder experiences a

basic change at a certain threshold value of excitation frequency. A quantitative study by Gu et al. (1994) and the later

numerical work of Lu and Dalton (1996) show that the initially formed concentration of vorticity moves closer to the

cylinder as the excitation frequency is increased relatively to the natural vortex shedding frequency. As the limiting

position is reached, the concentration of vorticity abruptly switches to the opposite side of the cylinder. Fig. 10 shows

instantaneous vorticity contours for various excitation frequencies at the same Reynolds number of Re¼ 80 and

amplitude a=D¼ 0:14 when the cylinder is at its upper limit position. It can be seen that the length of the elongated

vortex attached to the upper surface of the cylinder decreases as the excitation frequency is increased. The lower vortex
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Fig. 10. Vorticity contours at Re¼ 80, amplitude a=D¼ 0:14; (a) f/fs¼0.9; (b) f/fs¼1.0; (c) f/fs¼1.2; (d) f/fs¼1.3. Note that the vorticity

contours are plotted as the cylinder at its upper limit position.

Fig. 11. Vorticity contours at Re¼ 185, amplitude a=D¼ 0:4; (a) f/fs¼0.9; (b) f/fs¼1.2. Note that the vorticity contours are plotted as

the cylinder at its upper limit position.
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formed due to the motion of the cylinder interacts with the upper vortex to diminish the vorticity. As the frequency is

increased, the lower vortex becomes the dominant vortex and the upper vortex rolls up tightly in the wake of the

cylinder. This phenomenon was described in the earlier experimental and numerical studies. It is also found that there is
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a critical excitation frequency corresponding to a particular Reynolds number and oscillation amplitude at which the

switching occurs. Fig. 11 shows instantaneous vorticity contours with different excitation at Re¼ 185 and a=D¼ 0:4
when the cylinder is reaching its upper limit position. The critical excitation frequency f =f �e found in Gu et al. (1994) is

f =f �e ¼ 1:12 and the switching of the flow patterns in the wake of the cylinder is captured in our current numerical

results. Fig. 11 shows the difference in flow structure in the wake of the cylinder for low frequency ðf =fe ¼ 0:9Þ and high

frequency ðf =fe ¼ 1:2Þ. The contour plots compare fairly well with the one reported in Lu and Dalton (1996) at the same

Reynolds number and amplitude ratio where the smaller lower vortex at low frequency becomes the bigger vortex

compared with the upper vortex at higher frequency.

3.3. Forward flapping flight

In this example, we consider a forward flapping flight, one of the basic modes of flying in insects. The proposed ALE

DG method is applied for simulation of viscous flow over a flapping wing section in two-dimensional space at Reynolds

number in the range of insect flight. The results of unsteady effects and forces generated on the wing section are

computed for different flapping modes for varying flapping frequency and amplitude. The present simulation is verified

with earlier studies in Wang (2000).

As a simple model in two dimensions, the wing section in the chord direction is modelled as an ellipse of thickness

ratio 12.5% and chord length of c¼ 1. The wing is moving forward with velocity u0 while flapping with velocity

uf ðtÞ ¼ 2pfAsinð2pftÞ ð33Þ

at an inclined angle b to the horizontal direction; f and A are the flapping frequency and amplitude, respectively. The

unsteady effect of flow over the flapping foil is characterized by nondimensional numbers including the advance ratio

and Strouhal number. The ratio of forward and maximum flapping velocity is defined as the advance ratio,

J ¼
2pfA

u0
: ð34Þ

The Strouhal number or nondimensional flapping frequency is given as

Stc ¼
fc

u0
: ð35Þ

In this test, we study a viscous flow of Re¼ 1000 over the flapping wing with b¼ p=2, zero angle of attack in forward

flight and a fixed advance ratio of J ¼ 1:0. A circular computational domain is discretized into an unstructured grid,

which is refined at the leading edge and trailing edge as depicted in Fig. 12. By varying the flapping frequency, the

coefficients of lift and drag acting on the ellipse, measured in the parallel and orthogonal directions to the forward flying

velocity u0 can be obtained. However, in studying flapping flight, it is more convenient to show the forces in the
Fig. 12. Computational grid of flow over a forward flapping wing section (a) and zoomed in region (b) near the foil surface where the

grid points are clustered in the leading edge and trailing edge region.
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direction of effective flow velocity U at angle of attack a, with U as the sum of u0 and uf , a¼ tan�1ðuf ðtÞ=u0Þ. The forces

measured in the parallel and orthogonal direction to the velocity U are denoted as axial and normal forces (CA and CN )

in this study. Thus the time-averaged forces can be computed as

/CAS¼
1

T

Z T

0

CAðtÞdt; ð36Þ

where T is the time of oscillation. This average force in mean flow direction corresponds to the thrust in flapping flight.

In Fig. 13, the history of lift and drag coefficients as well as axial and normal force coefficients in nondimensional

time at flapping frequency of Stc ¼ 1:0 are shown. It can be seen that due to the symmetric flapping motion of the wing

at this frequency, the lift coefficient ðCLÞ symmetrically varies about zero mean, and thus the average lift is zero. The

drag coefficient is asymmetric and oscillating with a frequency twice that for the lift coefficient. As projected in the

effective flow direction, thrust is defined as the negative value of axial force ðCAÞ. It can be seen that the thrust is
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Fig. 13. Force coefficients acting on the flapping foil at Re¼ 1000, J ¼ 1 and Stc ¼ 1.
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Table 3

Average thrust coefficient for different Strouhal number and comparison between the present results with the earlier study.

Stc 0.5 1.0 2.0

/CAS (Wang, 2000) �0.08 �0.24 �0.06

/CAS (present) 0.0176 �0.225 �0.058
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generated in both up and down strokes and a positive average value of thrust is observed in this case. The thrust

coefficients for different flapping frequency are shown in Fig. 14 for Stc ¼ 0:5, 1.0, 2.0. In Table 3, the average force

coefficients are computed and compared with those reported in Wang (2000), in which the author employed a compact

finite difference scheme for simulations of flow over a flapping wing in elliptic coordinates by solving the incompressible

Navier–Stokes equations in vorticity-stream function formulation. The present results agree fairly well with this earlier

study. The average thrust coefficient is maximum at St¼ 1:0, which is also observed in the earlier numerical experiment.

It is of interest to note the agreement of the results from the present work with the earlier numerical experiment. The

two approaches are basically different, as the earlier study solved the Navier–Stokes equations in vorticity form in

elliptical coordinates attached to the body frame. The matching of results using the proposed approach again shows the

flexibility and accuracy of the method for resolving unsteady aerodynamic phenomena.
4. Conclusion

We have developed a new approach for simulations of compressible Navier–Stokes flows over deformable domains

and boundaries. The method employs high-order discontinuous Galerkin spatial discretization in the ALE framework

together with the explicit TVD Runge–Kutta scheme. Using the current approach, we are able to obtain high-order

accuracy for moving domain problems while the geometry conservation law is satisfied to ensure the preservation of

constant solutions. As for the grid movement, we have presented a simple and effective approach of grid velocity

smoothing based on local smoothing with variable diffusivity computed from mesh size functions. It has been shown

that this technique is able to handle variable geometries with reasonably large deformation. The application of the

proposed approach to some moving boundary problems in two dimensions has shown the accuracy of the methods

especially in resolving the flow features in the wake which result from interactions between flow and moving boundaries.

The results compare fairly well with the available published results as well as experiment.
Appendix A. Boundary conditions

It is considered as one of the advantages of the DG method that the boundary conditions are much simpler to

implement than the other high-order approaches, which require more complex treatment near the boundaries. In the

implementation of the DG method, the boundary conditions are weakly imposed by evaluating the left and right states

of solutions along the boundaries to compute the numerical fluxes. We briefly describe in detail the frequently used

boundary conditions in this work, including inflow/outflow boundary conditions and solid boundary conditions.
A.1. Inflow/outflow boundary condition

For inflow/outflow conditions, the state value at the boundaries ðub
hÞ is determined by using the outgoing Riemann

invariants in the normal direction to the boundary and given boundary data dependent on the nature of the flow at the

boundaries. For example, if the inflow is in the subsonic regime ð0ounocÞ, the boundary solution is computed from the

total temperature and total pressure set at the boundary and the interior invariants. In the case of subsonic outflow

ð�couno0Þ, the boundary solution is computed from only the set boundary pressure and the invariants on the interior.

As the boundary state is determined, the numerical flux across the boundary can be computed using the numerical flux

formulations, e.g. Lax-Friedrichs flux. It is not trivial to implement the viscous flux from the above set of conditions

applied for ub
h. The viscous flux is usually computed by interpolating the solution derivatives across the boundary.
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A.2. Solid boundary condition

The solid wall boundary condition is usually imposed in flow problems using the reflection technique. All of the

interior state is reflected symmetrically to the ‘‘ghost’’ state outside the domain in the normal direction. Then the

Riemann problem is solved on the boundary. Due to the symmetry of the reflection, the boundary flux obtained from

the Riemann solver involves only the pressure contribution. Essentially, it is stated via the reflecting boundary that no

flow can penetrate a solid wall, i.e.,

uin
wall
i ¼ uwalli nwalli ; ð37Þ

where uwalli and nwall are the wall velocity and normal vector, respectively. At the stationary boundary for inviscid flow

calculation, the normal velocity is set to zero, uin
wall
i ¼ 0. A symmetric boundary condition is applied to specify the state

condition which has the same density, internal energy and tangential velocity as the internal components.

For viscous flow the particles are stuck to the wall; therefore, ui ¼ 0. In addition to the conditions applied to the

velocity, temperature needs to be specified at the boundary. Basically there are two types of conditions: isothermal and

adiabatic. For an isothermal wall, the static temperature is set Tb ¼Twall. This condition, together with the static

pressure specified from the interior condition, Pb ¼ ðg�1ÞrE, are sufficient to determine the full state solution at the

boundary as

ub
h ¼

Pb

RTb

0 0 0 Pb=ðg�1Þ
� �T

: ð38Þ

No physical condition is set for viscous flux; therefore, it is computed by interpolating the gradient of solution across

the boundary.

For an adiabatic wall, the heat transfer across the boundary is specified instead. Thus, the Neumann boundary

condition is prescribed for temperature

@T

@n

����
wall

¼ 0: ð39Þ

By specifying two other conditions, static pressure and enthalpy, which are interpolated from the interior

Pb ¼ ðg�1ÞrE; Hb ¼
rE þ Pb

r
; ð40Þ

the full state vector of solution at the boundary is determined

ub
h ¼

g
g�1

Pb

Hb

0 0 0 rE

� �T
: ð41Þ

Under the adiabatic condition at the solid wall, it is required that the viscous flux associated with the energy equations is

set to zero. The other quantities are determined from interpolation as usual.
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